

DC-DC Converter NN2-XXXXXC4N Series

Typical Features

- ◆ Fixed input voltage, Isolated & unregulated, Output power 2W
- ◆ Efficiency up to 87% (Typ.)
- ◆ Mini size SIP package
- ◆ Isolation Voltage 4000VDC
- ◆ Operating Temperature from -40°C to +105°C

Application Field

This series of products can be widely used in the fields of instrument, communication, pure digital circuit, general low frequency analog circuit, relay drive circuit, data exchange circuit, etc.

Typical Product List											
Certificate	Part No.	Input Voltage Range (VDC)		Voltage	utput e/Current o/Io)	Input C (mA) @Nor Volta	Typ. ninal	Max. Capacit ive Load	Ripple & Noise (20MHz) Max/Typ.	(%)	iency @Full /Nom. tage
Ö		Nom.	Range	Vo (VDC)	lo(mA) Max/Min	Full Load	No Load	uF	mVp-p	Min	Тур.
-	NN2-05S24C4N	5	4.5 - 5.5	24	83/8	450	16	470	150/100	82	86
-	NN2-12S12C4N		10.8	12	167/17	180	10	1200	100/80	83	87
-	NN2-12S15C4N	12	- 13.2	15	133/13	180	10	1200	100/80	83	87

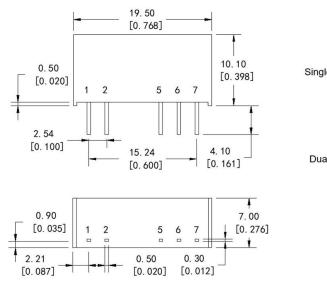
Note: The ripple & noise are tested by the twisted pair method.

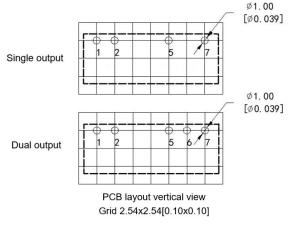
out Specifications						
Item	Operating Condition	Min.	Тур.	Max.	Unit	
	3.3Vdc input	-0.7		7		
	5Vdc input	-0.7		9		
Input Inrush Voltage	9Vdc input	-0.7		12	\/a -	
(1Sec max.)	12Vdc input	-0.7		18	Vdc	
	15Vdc input	-0.7		21		
	24Vdc input	-0.7		30		
Input Filter	Capacitor Filter					
Hot Plug	Unavailable					

DC-DC Converter NN2-XXXXXC4N Series

Output Specifications						
Item	Operating Condition		Min.	Тур.	Max.	Unit
Output Power					2	W
Output Voltage Accuracy	Refer to the Output Voltage Deviation Graph (Figure 1)					
Load Degulation	10% -100% load	3.3V output		15	20	%
Load Regulation		Others		10	15	
Line Veltere Demulation	land valtage about 140/	3.3V output			1.5	
Line Voltage Regulation	Input voltage change ±1% Othe				1.2	
Temp. Drift Coefficient	100% Load				±0.03	%/°C
Short Circuit Protection	Continuous, self-recovery					

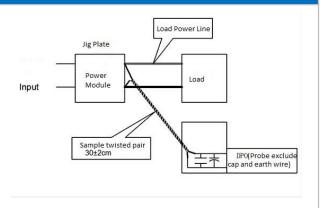
General Specifications							
ltem	Operating (Condition	Min.	Тур.	Max.	Unit	
Switching Frequency	Nominal input vo	Itage, full load		260		KHz	
Operating Temperature	Refer to the Temperature D	erating Graph (Figure 2)	-40		+105		
Storage Temperature			-55		+125		
Case temperature rise	Ta=2	5°C		30°		$^{\circ}\!\mathbb{C}$	
Pin soldering temperature	1.5mm from th	e case, 10S			300		
Relative Humidity	No condensing		5		95	%RH	
Isolation Voltage	I/P-O/P, test 1 minute, leakage current <1mA		4000			VDC	
Insulation Resistance	I/P-O/P @ 500VDC		1000			ΜΩ	
Isolation Capacitor	I/P-O/P, 100KHz/0.1V			20		pF	
Vibration			10-150	10-150Hz, 5G, 30 Min. along X, Y and Z			
MTBF	MIL-HDBK-2	17F@25℃	3500			K hours	
Case Material		Plastic in Black, flam	e class UL9	4-V0			
Unit Weight		2.5g (T	yp.)				
Cooling Method	Natural air						
D. diin a	Tube size (525x18x10mm)			25PCS/Tube			
Packing	Carton siz	2000PCS/Carton (Total 80 Tubes)					
Unit Dimensions	LxWxH	19.50× 7.00 × 10.10) mm	0.768	× 0.276 × 0.3	398 inch	


EMC Performance						
EMI	CE	CISPR32/EN55032 CLASS B (with the Recommended EMC circuit)				
EIVII	RE	CISPR32/EN55032 CLASS B (with the Recommended EMC circuit)				
EMS	ESD	IEC/EN61000-4-2 Air±8kV / Contact±6kV perf.Criteria B				



DC-DC Converter NN2-XXXXXC4N Series

Mechanical Dimensions

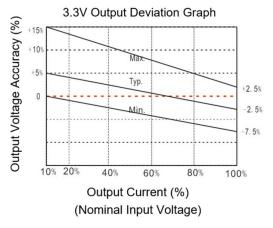

Unit: mm[inch]
Pin section tolerance ±0.10[±0.004]
General tolerance ±0.50[±0.020]

Pin Function Description								
Pin No.	1	2	3	4	5	6	7	
Single output	+Vin	GND	No Pin	No Pin	-Vout	No Pin	+Vout	
Dual outputs	+Vin	GND	No Pin	No Pin	-Vout	COM	+Vout	

Note: Please take the pin definition on the product label as the right one if there is any difference between the data sheet and the one printed on the product label.

Ripple & Noise Test Instruction (Twisted Pair Method, 20MHZ bandwidth)

- 1) The Ripple & noise test needs 12# twisted pair cables, an oscilloscope which bandwidth should be set to 20MHz, 0.1uF polypropylene capacitor and 10uF high-frequency low-resistance electrolytic capacitor are connected in parallel with the probes (100M bandwidth). The oscilloscope should be set at the Sample Mode.
- 2) The test diagram is shown on the right. The converter output connects to the electronic load by the jig with cables which size should be defined according to the output current value. The twisted pair (length 30cm±2 cm) should be connected in parallel with the load, the location is as close as possible to the output pins or terminals. The test can be start after input power on.



DC-DC Converter NN2-XXXXXC4N Series

Product Characteristics Graphs

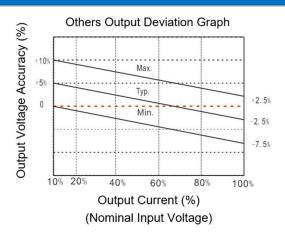


Figure 1

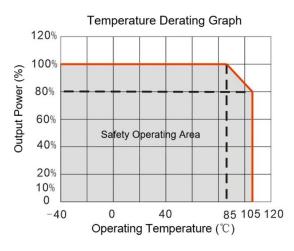
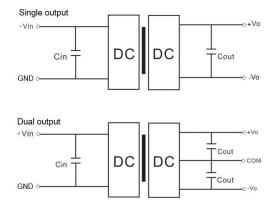


Figure 2


Recommended Circuits Diagrams for Application

1. Requirement for Output load

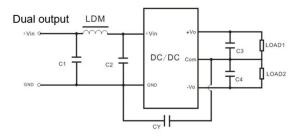
The maximum capacitive load was tested at the rated full load. The converter may not start or be damaged if the output capacitors exceed this value.

2. Typical application circuit

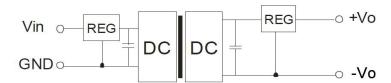
To ensure effectively decrease the input and output ripple and noise, a capacitor filter can be connected at the input and output, the application circuit is shown in the figure below. The suitable filter capacitors should be chosen as the recommended capacitive load values in Table 1. The converter could not start if the capacitance is too big.

Recommended Capacitive Load Value Table (Table 1)

Vin (Vdc)	Cin	Single Vout (Vdc)	Cout (µF)	Dual Vout (Vdc)	Cout (μF)
5	10 µ F/16V	3. 3	10 µ F/16V	± 3.3	4. 7 μF/16V
12	2. 2 µ F/25V	5	10 µ F/16V	±5	4.7µF/16V
15	2. 2 µ F/25V	9	2. 2 µ F/25V	±9	2. 2 µ F/25V
24	1 μ F/50V	12	2. 2 µ F/25V	±12	1 µ F/25V
		15	1 μ F/25V	±15	1μF/16V
		24	1 μ F/50V	±24	0. 47 μF/50\


DC-DC Converter NN2-XXXXXC4N Series

3. Recommended EMC Circuit Diagrams


Input v	oltage	5VDC	12/15/24VDC		
ЕМІ	C1/C2	4. 7μF/16V	4. 7μF/50V		
	CY	270pF/4KV	270pF/4KV		
	С3	Refer to Cou	it in Table 1		
	LDM	6.8 µ H	6.8 µ H		

Input v	oltage	5VDC	12/15/24VDC		
	C1/C2	4. 7μF/16V	4. 7μF/50V		
EMI	CY	270pF/4KV	270pF/4KV		
EIVII	C3/C4	Refer to Cou	it in Table 1		
	LDM	6.8 µ H	6.8µH		

4. Output voltage regulation and overvoltage protection

The simple solution to achieve the output regulated voltage, over voltage and over current protections is to connect a linear regulator with overheat protection at input or output, and a capacitor filter connected in parallel as below circuit. Filter capacitive value recommended see table 1, Linear regulator should be chosen according to the actual voltage & current for operating. Or Aipu NW series products are recommended instead.

Application Notice

- 1. This series of converters should not be used in parallel, and they do not support hot-plugging.
- 2. The product performance in this datasheet cannot be guaranteed if it works at a lower load than the minimum load condition.
- 3. All values or indicators in this datasheet had been tested based on Aipupower test specifications.

Guangzhou Aipu Electron Technology Co., Ltd

Address: Building 4, HEDY Park, No.63, Punan Road, Huangpu Dist, Guangzhou, China.

Tel: 86-20-84206763 Fax: 86-20-84206762 HOTLINE: 400-889-8821 E-mail: sales@aipu-elec.com Website: https://www.aipupower.com